skip to main content


Search for: All records

Creators/Authors contains: "Malen, Jonathan A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Thin film evaporation is a widely-used thermal management solution for micro/nano-devices with high energy densities. Local measurements of the evaporation rate at a liquid-vapor interface, however, are limited. We present a continuous profile of the evaporation heat transfer coefficient ($$h_{\text {evap}}$$hevap) in the submicron thin film region of a water meniscus obtained through local measurements interpreted by a machine learned surrogate of the physical system. Frequency domain thermoreflectance (FDTR), a non-contact laser-based method with micrometer lateral resolution, is used to induce and measure the meniscus evaporation. A neural network is then trained using finite element simulations to extract the$$h_{\text {evap}}$$hevapprofile from the FDTR data. For a substrate superheat of 20 K, the maximum$$h_{\text {evap}}$$hevapis$$1.0_{-0.3}^{+0.5}$$1.0-0.3+0.5 MW/$$\text {m}^2$$m2-K at a film thickness of$$15_{-3}^{+29}$$15-3+29 nm. This ultrahigh$$h_{\text {evap}}$$hevapvalue is two orders of magnitude larger than the heat transfer coefficient for single-phase forced convection or evaporation from a bulk liquid. Under the assumption of constant wall temperature, our profiles of$$h_{\text {evap}}$$hevapand meniscus thickness suggest that 62% of the heat transfer comes from the region lying 0.1–1 μm from the meniscus edge, whereas just 29% comes from the next 100 μm.

     
    more » « less
  2. An analytical model using three-directional anisotropic (TDA) dispersion and a novel anisotropic relaxation time (RT) relation for modeling the thermal conductivity ( k ) of intercalated layered materials is developed. The TDA dispersion eliminates the restriction of in-plane isotropy and is suitable for TDA materials such as black phosphorous. We compare calculations of k of bulk intercalated layered materials using the isotropic Debye dispersion and BvK dispersion with our TDA dispersion model, paired with both isotropic and anisotropic RTs. We find that calculated k values by the TDA dispersion model agree best with the experimental data. Furthermore, anisotropic RTs largely improve the performance of the Debye and BvK dispersion models whose average relative deviations for the in-plane k are reduced from 17.3% and 23.0% to 4.4% and 8.5%, respectively. Finally, thermal conductivity accumulation functions of intercalated MoS 2 and graphite are numerically calculated based on the TDA dispersion with anisotropic RTs. These models predict that intercalants cause increased contributions from phonons with shorter mean free paths, especially for in-plane thermal conductivity. 
    more » « less
  3. To identify superior thermal contacts to graphene, we implement a high-throughput methodology that systematically explores the Ni−Pd alloy composition spectrum and the effect of Cr adhesion layer thickness on thermal interface conductance with monolayer graphene. Frequency domain thermoreflectance measurements of two independently prepared Ni−Pd/Cr/graphene/ SiO2 samples identify a maximum metal/graphene/SiO2 junction thermal interface conductance of 114 ± (39, 25) MW/m2 K and 113 ± (33, 22) MW/m2 K at ∼10 at. % Pd in Ninearly double the highest reported value for pure metals and 3 times that of pure Ni or Pd. The presence of Cr, at any thickness, suppresses this maximum. Although the origin of the peak is unresolved, we find that it correlates with a region of the Ni−Pd phase diagram that exhibits a miscibility gap. Cross-sectional imaging by high-resolution transmission electron microscopy identifies striations in the alloy at this particular composition, consistent with separation into multiple phases. Through this work, we draw attention to alloys in the search for better contacts to two-dimensional materials for next-generation devices. 
    more » « less
  4. To identify superior thermal contacts to graphene we implement a high throughput methodology that systematically explores the Ni-Pd alloy composition spectrum and the effect of Cr adhesion layer thickness on the thermal interface conductance with monolayer CVD graphene. Frequency domain thermoreflectance measurements of two independently prepared Ni- Pd/Cr/graphene/SiO2 samples both identify a maximum in the metal/graphene/SiO2 junction thermal interface conductance of 114± (39, 25) MW/m2K and 113± (33, 22) MW/m2K at ~10 atomic percent Pd in Ni—nearly double the highest reported value for pure metals and three times that of pure Ni or Pd. The presence of Cr, at any thickness, suppresses this maximum. Although the origin of the peak is unresolved, we find that it correlates to a region of the Ni-Pd phase diagram that exhibits a miscibility gap. Cross sectional imaging by high resolution transmission electron microscopy identifies striations in the alloy at this particular composition, consistent with separation into multiple phases. Through this work, we draw attention to alloys in the search for better contacts to 2D materials for next generation devices. 
    more » « less